Our new US patent (10,844,921) on constraints has just issued
Category Archives: Uncategorized
An Incomplete History of the Hindle Mount, Whiffletree, Swingletree, Swingles, and the Grubb Telescope
Mechanical supports for mirrors and other optical components and substrates to maintain their initial undeformed shape is a common engineering problem. Ideally a mirror or similar substrate can be supported on three points if the mirror or substrate is stiff enough. However in many cases, the deflections are too large and more support is required. One of the earliest areas where this problem arose was for the mirrors in early telescopes. Irishman Howard Grubb came up with a novel solution by supporting the mirror on a set of levers known as a whiffletree. For a historical bio of Howard Grubb see Biographical Encyclopedia of Astronomers or the Museum Victoria (Australia) bio or a history of the Armagh Observatory and Grubb’s telescope.
Design of Constraint Systems Based on Minimax Properties of Eigenvalues
There is a neat correspondence between the mathematical concept of a constraint and the practice of exact-constraint or kinematic machine design. This leads to some really useful insight for people designing machines with dynamics in mind. The PDF below is the extended abstract for a paper that Justin presented in Austin last week at the ASPE annual meeting.
Continue reading Design of Constraint Systems Based on Minimax Properties of Eigenvalues
Thermal Expansion: CTE Definitions and Thermal Strain
This entry discusses different definitions of CTE, their relation to thermal strain, how to convert between the different forms, and how to use them in a model. The forms discussed below include instantaneous coefficient of thermal expansion (CTE), secant coefficient of thermal expansion, and direct use of a thermal strain function.
Continue reading Thermal Expansion: CTE Definitions and Thermal Strain
Strain, Speed, and Microslip
Microslip in rolling motion is often very complicated, but the net effect can sometimes be estimated pretty easily based on strain and the resulting changes in velocity.
Units of Power Spectral Density
The power spectral density (PSD) is one of the primary ways we characterize random or broadband signals. In many cases, a PSD is read from a signal analyzer and used qualitatively to describe the frequency content of a signal. But to do anything quantitative with a PSD, we need to understand its units.
Continue reading Units of Power Spectral Density
How Crowned Pulleys Make Belts Track
How to Get Part Edges to Show in Paraview or ParaFOAM
Paraview is a very powerful tool for post-processing and displaying data, especially from FE or CFD simulations. But because it typically acts on the mesh without the underlying geometry, it doesn’t inherently know about the edges of parts or volumes. In this post, I run through the steps to detect the edges and draw them as a wireframe.
Continue reading How to Get Part Edges to Show in Paraview or ParaFOAM
Strain and its Transformation
We can’t get very far in the understaning of machines and structures without thinking about their deformation. For solids, we usually describe the deformation in terms of strain. For a fluid, we usually speak of strain rate.
Testing Latex2WP
Look at the document source to see how to strike out text, how to use different colors, and how to link to URLs with snapshot preview and how to link to URLs without snapshot preview.
There is a command which is ignored by pdflatex and which defines where to cut the post in the version displayed on the main page Continue reading Testing Latex2WP